Лабораторная работа N = 1.05

Исследование колебаний физического маятника

Содержание

Введение	2
Экспериментальная установка	10
Проведение измерений	12
Обработка результатов	14
Контрольные вопросы	16
Литература	17
Приложение	18

Цели работы

1. Изучение характеристик затухающих колебаний физического маятника.

Задачи

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

Введение

Физическим маятником называется твердое тело, способное совершать колебания вокруг точки подвеса. В отличие от математического маятника, в случае физического маятника размерами тела нельзя пренебречь по сравнению с расстоянием от точки подвеса до центра масс. Модель физического маятника показана на рис. 1.

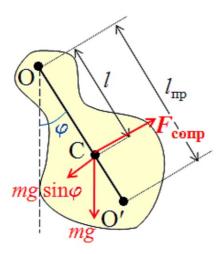


Рис. 1. Физический маятник. Ось качания (ось подвеса) проходит перпендикулярно рисунку в точке O, C - центр масс, O' - центр качания

Угол φ между отрезком и вертикалью задает текущее положение маятника. Выберем вращение против часовой стрелки в качестве положительного направления вращения. Тогда для маятника на рис. 1 при отклонении налево $\varphi < 0$, при отклонении направо $\varphi > 0$.

Движение физического маятника подчиняется основному уравнению динамики вращательного движения, которое в данном случае имеет вид

$$I\varepsilon = M_{\text{тяж}} + M_{\text{conp}},$$
 (1)

где I - момент инерции тела относительно оси качания, ε - угловое ускорение, $M_{\text{тяж}}$ и $M_{\text{сопр}}$ - осевые моменты силы тяжести и силы сопротивления соответственно.

Угловое ускорение по определению - вторая производная от угла

по времени:

$$\varepsilon = \frac{d^2 \varphi}{dt^2}.\tag{2}$$

Сила взаимодействия маятника со средой, вообще говоря, распределена по всей поверхности маятника, но для вычисления момента силы сопротивления эту силу можно заменить равнодействующей силой лобового сопротивления $F_{\rm conp}$, приложенной в центре масс маятника. При малой скорости движения маятника сила лобового сопротивления пропорциональна скорости v движения центра масс и называется силой вязкого трения:

$$F_{\text{comp}} = -rv, \tag{3}$$

где r — постоянный коэффициент, который будем называть коэффициентом сопротивления среды. В соответствии с уговором о положительном направлении вращения, скорости v формуле (3) приписывается знак «+» при вращении маятника против часовой стрелки и «-» при вращении в обратную сторону. Аналогичное правило знаков используется для величины $F_{\rm conp}$. Знак «-» в формуле (3) учитывает, что сила сопротивления всегда направлена противоположно скорости.

Момент силы сопротивления

$$M_{\text{comp}} = F_{\text{comp}}l,$$
 (4)

где l - расстояние между точкой подвеса O и центром масс маятника C.

Подставляя (3) в (4), с учетом того, что $\upsilon=l\frac{d\varphi}{dt}$, получаем:

$$M_{\rm comp} = -rvl = -r\frac{ds}{dt}l = -r\frac{d(l\varphi)}{dt} = -rl^2\frac{d\varphi}{dt}.$$
 (5)

Момент силы тяжести $M_{\text{тяж}} = -mglsin\varphi$. Здесь учтено, что знак момента $M_{\text{тяж}}$ противоположен знаку угловой координаты φ . Для малых углов отклонения ($\varphi \leq 15^\circ$) с погрешностью менее 1% $sin\varphi \approx \varphi$, где φ – в радианах, поэтому при малой угловой амплитуде качания можно считать, что

$$M_{\text{TSK}} = -mgl\varphi. \tag{6}$$

Подставляя формулы (2), (5), (6) в уравнение динамики (1), получаем уравнение свободных затухающих колебаний физического маятника

$$I\frac{d^2\varphi}{dt^2} = -mgl\varphi - rl^2\frac{d\varphi}{dt}. (7)$$

Введем обозначения

$$\omega_0^2 = \frac{mgl}{I}, \beta = \frac{rl^2}{2I}$$

где ω_0^2 — циклическая частота собственных незатухающих колебаний маятника; β — коэффициент затухания. Соответственно период колебаний маятника равен

$$T = 2\pi \sqrt{\frac{I}{mgl}}. (8)$$

Приведенной длиной физического маятника называется длина математического маятника, имеющего такой же период колебаний, т. е.

$$T = 2\pi \sqrt{\frac{I}{mgl}} = 2\pi \sqrt{\frac{l_{\rm np}}{g}}.$$
 (9)

Учитывая, что момент инерции маятника относительно точки

подвеса I связан по теореме Штейнера с моментом инерции относительно центра масс I_0 соотношением $I = I_0 + ml^2$, из (9) получаем

$$l_{\rm np} = \frac{I}{ml} = \frac{I_0}{ml} + l. \tag{10}$$

Точка O', находящаяся на расстоянии приведенной длины от оси подвеса, называется центром качания.

С учетом введенных обозначений уравнение (7) приводится к виду

$$\frac{d^2\varphi}{dt^2} + 2\beta \frac{d\varphi}{dt} + \omega_0^2 \varphi = 0. \tag{11}$$

Решение уравнения (11) при $\beta < \omega_0$ имеет вид

$$\varphi = A_0 e^{-\beta t} \cos(\omega t + \alpha_0), \tag{12}$$

где A_0 – амплитуда в начальный момент времени; ω – циклическая частота затухающих колебаний, α_0 – начальная фаза.

Таким образом, при наличии вязкого трения амплитуда колебаний убывает по экспоненциальному закону (рис. 2):

$$\varphi = A_0 e^{-\beta t}. (13)$$

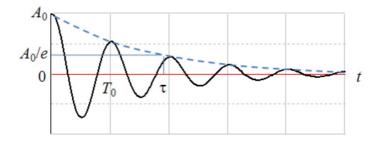


Рис. 2. Затухающее колебание

За время $\tau=1/\beta$ амплитуда убывает в e=2.72 раз. Это время называется временем затухания. Логарифмируя уравнение (13), получаем, что

$$ln\frac{A}{A_0} = -\beta t, (14)$$

т. е. график зависимости логарифма отношения амплитуд от времени представляет собой прямую, модуль коэффициента наклона которой равен коэффициенту затухания.

Циклическая частота затухающих колебаний несколько ниже циклической частоты собственных колебаний:

$$\omega = \sqrt{{\omega_0}^2 - \beta^2},\tag{15}$$

однако при малом затухании $(\beta * \omega_0)$ можно считать $\omega \approx \omega_0$.

Вместо коэффициента затухания β , имеющего размерность частоты, бывает удобно использовать безразмерный параметр, который называется логарифмическим декрементом затухания:

$$\lambda = \ln \frac{A(t)}{A(t+T)} = \beta T. \tag{16}$$

Логарифмический декремент затухания обратен числу колебаний за время затухания.

Кроме вязкого трения колебания маятника могут затухать из-за сухого трения в оси подвеса. Если при вязком трении момент силы трения пропорционален угловой скорости, то при сухом трении он постоянен. В этом случае у маятника по обе стороны от положения равновесия появляется зона застоя $\Delta \varphi_3$: если угол отклонения $|\varphi| < \Delta \varphi_3$, то момент силы трения уравновешивает момент силы тяжести, и маятник остается в покое.

Если угол отклонения превышает ширину зоны застоя, то пока маятник движется в одном направлении, постоянный момент сухого трения вызывает смещение средней точки колебаний к границе зоны застоя (в сторону, противоположную направлению вращения). При изменении направления движения после точки поворота средняя точка перескакивает к другой границе зоны застоя. Поэтому за один период колебаний амплитуда уменьшается на удвоенную ширину зоны застоя (т.е. на величину $4\Delta\varphi_3$). Амплитудные значения уменьшаются по линейному закону:

$$A(t = nT) = A_0 - 4n\Delta\varphi_3. \tag{17}$$

Колебания прекращаются после конечного числа циклов. Рис. 3 иллюстрирует различие в затухании маятников с вязким и сухим трением.

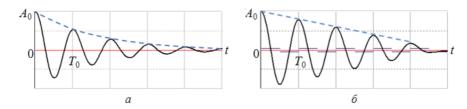


Рис. 3. Затухание маятника с вязким (а) и сухим (б) трением

Экспериментальная установка

Рис. 4. Стенд лаборатории механики (общий вид)

indinaminiminiminiminiminiminimini

Работа выполняется на универсальном стенде (рис. 4).В состав установки входят:

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления
- 4. Передняя крестовина

В работе используется передняя крестовина. Угол отклонения маятника отсчитывается по шкале в угловых градусах. Время измеряется механическим или электронным секундомером. Характеристики средств измерений привести в 1.

Таблица 1: Характеристики средств измерения

Наименование	Предел	Цена	Погрешность
средства измерения	измерений	деления	$\delta_{\scriptscriptstyle m M}$
Шкала	60°	1°/дел.	1°
Секундомер			

Техника безопасности

- 1. Утяжелители должны быть плотно закреплены на спицах во избежание вылета с установки.
- 2. Требуется контролировать, чтобы передняя крестовина вращается независимо от задней.

Проведение измерений

- 1. Занести в протокол параметры установки (таблица с параметрами находится в лаборатории).
- 2. Вращая рукоятку сцепления против часовой стрелки, расцепить переднюю и заднюю крестовины.
- 3. Отсоединить нить от ступицы.
- 4. Установить груз на спице со стрелкой на первую риску, а противоположный груз на шестую риску. На боковых спицах установить грузы на расстоянии третьей риски (риска должна находиться у поверхности груза, расположенной ближе к оси вращения крестовины).
- 5. Совместить указатель положения маятника (стрелку спицы) с центральной отметкой шкалы ($\varphi_{\text{шк 0}} = 30^{\circ}$), слегка перемещая один из грузов на боковых спицах.
- 6. Запуская маятник из положения $\varphi_{\text{шк}}=0$, три раза измерить время десяти (N=10) колебаний маятника. Записать результаты измерений $t_1=...c;t_2=...c;t_3=...c$..
- 7. Отклонить маятник в положение $\varphi_{\text{шк}} = 0$ (при этом отклонение маятника от положения равновесия составляет 30°), затем отпустить маятник и одновременно включить секундомер. Маятник будет совершать свободные затухающие колебания. Не останавливая секундомер, измерить время, когда амплитуда отклонения маятника от равновесного положения будет равна 25° , 20° , 15° , 10° , 5° . Результаты измерений занести в табл. 2. Измерения удобно проводить вдвоем: один следит за изменением амплитуды отклонения A, а второй за текущим временем по секундомеру. Опыт повторить три раза. Результаты измерений записать в табл. 2.

- 8. Установить грузы на боковых спицах на первую риску. Совместить указатель с центральной отметкой шкалы ($\varphi_{\text{шк 0}} = 30^{\circ}$), слегка перемещая один из грузов на боковых спицах. Три раза измерить время N=10 колебаний маятника. Результаты занести в табл. 3.
- 9. Повторить измерения, устанавливая боковые грузы на расстоянии 2, 3, 4, 5, 6 рисок.

Внимание! Результаты измерений нужно подписать у преподавателя, ведущего занятие в лаборатории.

Обработка результатов

- 1. По результатам измерений рассчитать среднее время десяти колебаний \bar{t} и период колебаний $T=\frac{\bar{t}}{N}.$
- 2. По данным табл. 2 построить график зависимости амплитуды колебаний от времени A(t). Определить, какой тип трения играет главную роль в затухании колебаний: сухое трение или вязкое (см. рис. 3).

В случае вязкого трения построить график, соответствующий формуле (14), аппроксимировать его прямой линией по методу наименьших квадратов и найти коэффициент затухания β и время затухания θ .

В случае сухого трения по угловому коэффициенту графика и найденному периоду колебаний найти ширину зоны застоя $\Delta \varphi_3$ (см. формулу (17)). Оценить, через сколько периодов колебания прекратятся.

3. Для каждого положения грузов вычислить расстояния центров верхнего $(R_{\rm Bepx})$, нижнего $(R_{\rm Huжh})$ и боковых $(R_{\rm бок})$ грузов от оси вращения по формуле

$$R = l_1 + (n-1)l_0 + b/2$$

где l_1 – расстояние от оси вращения до первой риски, l_0 – расстояние между соседними рисками, b – размер груза вдоль спицы. Результаты занести в табл. 4.

4. Рассчитать моменты инерции грузов:

$$I_{\rm rp} = m_{\rm rp} ({R_{\rm Bepx}}^2 + {R_{\rm HMW}}^2 + 2{R_{\rm 60K}}^2).$$

Вычислить полный момент инерции физического маятника: $I = I_{\rm rp} + I_0$, где I_0 — момент инерции ступицы и крестовины, равный $8 \cdot 10^{\circ 3}$ Н·м. Результаты занести в табл. 4.

- 5. Построить график $T^2(I)$. Аппроксимировать его прямой линией по методу наименьших квадратов. По угловому коэффициенту графика найти произведение ml (см. формулу (8)).
- 6. Предполагая, что основная масса маятника сосредоточена в грузах на спицах, вычислить расстояние от оси вращения до центра масс $l_{\rm тeop}$.
- 7. По периодам колебаний из табл. 3 рассчитать приведенную длину маятника $l_{\rm np\ scn}$. Результаты занести в табл. 4.
- 8. Вычислить по формуле (10) теоретические значения приведенной длины $l_{\rm пр\ Teop}$, используя величину $l_{\rm Teop}$. Результаты занести в табл. 4.

В отчет по лабораторной работе должны входить:

- Графики зависимостей амплитуды колебаний от времени и квадрата периода от момента инерции.
- Вывод о преобладающем типе трения.
- Экспериментальная и теоретическая приведенная длина маятника при разных его конфигурациях (в двух последних строках табл. 4).

Контрольные вопросы

- 1. Чем отличается физический маятник от математического?
- 2. От чего зависит период колебаний математического маятника?
- 3. Какой вид имеет уравнение гармонических колебаний физического маятника?
- 4. Что такое и как вычисляются собственная частота, период колебаний и приведенная длина физического маятника?
- 5. Какой вид имеет уравнение затухающих колебаний при вязком трении?
- 6. В каких единицах измеряются коэффициент затухания и логарифмический декремент затухания?
- 7. Какой вид имеет график зависимости угла от времени для затухающих колебаний при сухом и вязком трении.
- 8. Может ли приведенная длина физического маятника быть меньше расстояния от оси подвеса до центра масс, если да, то при каких условиях?

Литература

- 1. Платунов Е.С. Физика. Т. 1. Классическая механика: Учеб. пособие. 2-е изд., перераб. и доп. СПб: СПбГУНиПТ, 2005. 259 с.
- 2. Трофимова Т.И. Курс физики: Учеб. для вузов. М.: Высш. шк., 2002. 542 с.
- 3. Курепин В.В., Баранов И.В. Обработка экспериментальных данных: Методические указания к лабораторным работам. СПб, 2003.–57 с.

Приложение

Таблица 2

Амплитуда отклонения Время	25°	20°	15°	10°	5°
t_1,c					
t_2 ,c					
t_3 ,c					
\bar{t} ,c					

Таблица 3

Положение					
боковых	t_1	t_2	t_3	$ar{t}$	T
грузов					
1 риска					
2 риски					
3 риски					
4 риски					
5 рисок					
6 рисок					

Таблица 4

Риски	1	2	3	4	5	6
$R_{\text{верх}}$						
$R_{\text{ниж}}$						
$R_{\text{бок}}$						
I_{rp}						
I						
Іпр эксп						
$l_{\rm np\ reop}$						